Long Baseline Bistatic Radar for Space Situational Awareness

Presented at SCI-SET-297 Space Situational Awareness Specialists' Meeting

Gregory Hogan

Sarah Welch, Gregory Hogan, Delphine Cerutti-Maori, Simon Garrington, Robert Morrison, Cees Bassa, Nick Pallecaros, Paul Harrison, Tonino Pisanu, Marco Martorella

Background & Motivation

- Space Situation Awareness becoming more challenging
 - Increasing satellite population in Geosynchronous orbit regime
 - Smaller and maneuvering targets difficult to detect and track
- Greater sensor sensitivity required to maintain custody
 - Some gains can be achieved through novel radar signal processing
 - Additional receive apertures can provide cost effective scaling
- Long baseline radar multistatics increase sensitivity with low-noise temperature receive apertures and provide better metrics from diverse look angles

RX Array

BASELINE

Research Objectives

- Develop and conduct long baseline bistatic radar (LBBR) and multistatic (LBMR) experiments for detection and tracking of GEO Resident Space Objects
- Develop algorithms for detection and tracking of GEO RSOs using multi-bistatic radar systems
- Investigate a system architecture for a radar network for Space Surveillance and Tracking (SST)

Participants

• US, UK, ITA, DEU, NRD, FRA, ESP, TUR

Sensors and Experiment Overview

Bistatic SSA - 4 G Hogan 10/10/22 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lincoln Space Surveillance Complex

Sensor Parameters and Bistatic Receiver Gain for Millstone Hill & TIRA Radars

Parameter	MHR	TIRA	e-MERLIN (Lovell)	e-MERLIN (Knockin)	SRT	WSRT	
	ТХ	ТХ	RX	RX	RX	RX	
Lat/Lon (degrees)	42.6,	50.6	53.0,	52.8,	39.5,	52.9,	
	288.5	7.1	357.4	357.0	9.2	6.6	
Antenna Diameter (m)	25.6	34	76	25	64	25	
Center Frequency (MHz)	1295	1333	[1250-1750]	[1250-1750]	1295	1295	
Ref. SNR (dB)	50	47	66	57	65	57	
Rx Gain (dB)	-		16 (MHR)	7 (MHR)	15 (MHR)	7 (MHR)	
			19 (TIRA)	10 (TIRA)	18 (TIRA)	10 (TIRA)	

Date	Sensors	RSO Objects	Outcome
Jan 2020	MHR & WSRT	43039, 27683	Range-Doppler & RCS Measurements
Mar 2021	MHR & SRT	43039, 42950, 41036	Range-Doppler & RCS Measurements
Feb / May 2021	MHR & e-MERLIN	43039, 42950, 27683	Target Detection
May 2021	TIRA & e-MERLIN	43039, 37775	Doppler Processing – multiple targets

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Bistatic SSA - 7 G Hogan 10/10/22

MHR → WSRT Range-Time & Range-Doppler Processing

Coherent Processing

- 512 pulses / CPI
- Integrate 512 pulses (10 seconds)
- Reference range and Doppler (0,0) is the bistatic range and Doppler computed from the TLE*
 - A target at exactly (0,0) would be exactly on the TLE, assuming there are no processing errors or other biases
- Doppler spread appears in the response
 - Could be from uncompensated acceleration or slight phase correction errors during pulse compression

0.05

-115

0.1

-0.5

-0.05

0

Dopper (m/s)

(d)

Bistatic SSA - 8 G Hogan 10/10/22

*TLE = Two Line Element Set

MHR → WSRT Coherent Integration for RSOs 43039 & 27683

Coherent Integration after Adjusting for Range Rate Phase Errors

collection time

- MHR monostatic RCS comparable with historic measurements
- Both SRT and WSRT Bistatic RCS measurements lower than monostatic
- Bistatic Receiver gain calculated based on monostatic RCS

SRT and MHR: SNR and RCS Measurements					
Object	43039	42950	41036		
Median SNR Gain at SRT (dB)	4.3	3.1	-15.3		
Median SRT RCS (dBsm)	11.6	15.2	-5.1		
Median MHR RCS (dBsm)	22.9	28.0	26.0		
Historical MHR RCS (min,max)	(22,23)	(27,28)	(24,25)		

Object	43039	27683
Median SNR Gain at WSRT (dB)	0.6	-17.4
Median WSRT RCS (dBsm)	12.6	14.6
Median MHR RCS (dBsm)	19.4	38.2
Historical MHR RCS (min,max)	(22,23)	(39,40)

4 GEO Satellites observed in cluster with Astra 1N (37775) at e-MERLIN Knockin Antenna Similar results seen in TIRA monostatic data

SNR steady over time for all 4 targets

Expected coherent integration gain over ~50s

4 GEO Satellites observed in cluster with Astra 1N (37775)

- Space Situation Awareness becoming more challenging
- Greater sensor sensitivity required to maintain custody
 - Additional receive apertures most promising
- NATO SET-293, *RF Sensing for SSA*, exploring long baseline radar multistatics
 - Two transmitters (US & DEU) and 3 radiotelescope sites (GBR, NLD & ITA)
 - Conducted 5 radar measurement collections
 - Early results show multi-target detection, achieving long integration times
- Additional bistatic collections planned with focus on multiple and closely spaced targets
 - Possible collection at X-band
- Collaboration with SCI-SET-ET-057 Exploratory on 'Experimental analysis of combined, multistatic RF/EO data for improved Space Situational Awareness (SSA)'

Bistatic Results for MHR and SRT & WSRT

64 m SRT and MHR – 6500 km Baseline - 10°				25 m WSRT and MHR – 5700 km Baseline - 9°					
	SNRS (dB)	RCS (dBsm)				SNRS (dB)	RCS (dBsm)		
Object	Median SNR Gain at SRT (SRT – MHR)	Median SRT RCS	Median MHR RCS	Historical MHR L-Band RCS (min, max)	Object	Median SNR Gain at WSRT (WSRT – MHR)	Median WSRT RCS	Median MHR RCS	Historical MHR L-Band RCS (min, max)
43039	4.4	11.6	22.9	(22,23)	43039	-0.6	12.6	19.4	(22,23)
42950	3.1	15.2	28.0	(27,28)	27683	-17.4	14.6	38.2	(39,40)
41036	-15.3	-5.1	26.0	(24,25)	Export Z dP goin				
Expect ~16 dB gain									

- SNR gain at both telescopes is lower than predicted and it varies by object
 - Suggests bistatic RCS is lower than monostatic RCS
 - Significant variance in the SNR gain between different objects
- Measured monostatic RCS is consistent with past measurements
- Bistatic RCS for 43039 is similar at SRT and WSRT